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Abstract. As an effective technique to improve the rainfall forecast, data assimilation plays an important role in meteorology 

and hydrology. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial 

and lateral boundary conditions of the Numerical Weather Prediction (NWP) systems. The Weather Research and Forecasting 

(WRF) model is applied to simulate three typhoon storm events in southeast coast of China. Radar data from Changle Doppler 10 

radar station are assimilated with three-dimensional variational data assimilation (3-DVar) model. Nine assimilation modes 

are designed by three kinds of radar data (radar reflectivity, radial velocity, radar reflectivity and radial velocity) and three 

assimilation time intervals (1h, 3h and 6h). The rainfall simulations in a medium-scale catchment, Meixi, are evaluated by 

three indices including relative error (RE), critical success index (CSI) and root mean square error (RMSE). Assimilating radial 

velocity with time interval of 1 h can significantly improve the rainfall simulations and outperforms the other modes for all 15 

the three storm events. Shortening the assimilation time interval can improve the rainfall simulations in most cases, while 

assimilating radar reflectivity always leads to worse simulation as the time interval shortens. The rainfall simulation can be 

improved by data assimilation as a whole, especially for the heavy rainfall with strong convection. The findings provide 

references for improving the typhoon rainfall forecasts in catchment scale and have great significance on typhoon rainstorm 

warning. 20 
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1 Introduction 

Although the resolution of numerical weather prediction (NWP) system is increasing with the improvement of computational 

efficiency and abundance of observation data, the rainfall is still one of the most difficult meteorological factors to forecast 

(Lu et al., 2017; Avolio and Federico, 2018). Typhoon always comes along with heavy rainfall, which lead to great loss. 

However, due to the uncertainty of the rainfall and the imperfect generation of NWP system, rainfall forecast with severe 5 

convection is unsatisfactory in medium and small catchment scale (Tian et al., 2017a). Data assimilation plays an important 

role in NWP and is always applied to correct the initial and lateral boundary condition of NWP system, which can effectively 

improve the rainfall forecast (Mohan et al., 2015; Liu et al., 2018). 

Various kinds of observation data have been tested and assimilated by different assimilation methods. Wan and Xu (2011) 

simulated a heavy rainstorm by Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) 10 

data assimilation (DA) system in the central Guangdong Province of south-east China. The rainfall simulation error was 

reduced at 4-km grid scale by assimilating satellite radiance data, which helped to analyse rainfall causes accurately. Giannaros 

et al. (2016) evaluated a lightning data assimilation (LTNGDA) technique over eight rainfall events occurred in Greece. The 

verification score of the rainfall simulation were significantly improved by the employment of WRF-LTNGDA, especially for 

heavy rainfall. Zhang et al. (2016) presented a regional ensemble data assimilation system that assimilated microwave 15 

radiances into WRF model. The rainfall simulations were improved in terms of the accumulated rainfall and spatial rainfall 

distribution for hydrological applications in the southeastern United States. In order to increase the rainfall simulation accuracy 

in catchment scale, Yucel et al. (2015) assimilated conventional meteorological observations by three-dimensional variational 

data assimilation (3-DVar) model in large scale meteorological fields. As the inputs of the hydrological model, the 

improvement of rainfall simulations reduced the errors of runoff simulation in the western Black Sea Region of Turkey.  20 

Due to the high spatiotemporal resolution, radar data are assimilated to correct the NWP system for mesoscale and microscale 

weather prediction (Milan et al., 2008; Zhao and Jin, 2008). Wang et al. (2013) tested the radar data assimilation system by 

simulating a midlatitude squall-line case in the U.S. Great Plains, and the results indicated that radar data assimilation was able 

to improve rainfall forecasts at the convective scale. Liu et al. (2013) selected 4 storm events in a small catchment (135.2 km2) 

located in southwest England to explore the effect of data assimilation for rainfall forecasts, and assimilating radar reflectivity 25 

can significantly improve the forecasting accuracy for the events with one-dimensional evenness in either space or time. Hou 

et al. (2015) improved the short-term forecast skill up to 9 hours by assimilating radar data in southern China. 

However, the mode of radar data assimilation has not been investigated in depth, and the consistent conclusions have not been 

obtained for time interval setting of data assimilation and the option of radar reflectivity and radial velocity. Tian et al. (2017b) 

found that radar reflectivity assimilation led to better rainfall simulation than radial velocity assimilation with the time interval 30 

of 6 h. Maiello et al. (2014) assimilated both radar reflectivity and radial velocity with 3 h assimilation cycle to improve the 

WRF high resolution initial condition, and the rainfall forecast became more accurate for several experiments in the urban area 
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of Rome. Bauer et al. (2015) indicated that radar data assimilation significantly improved the rainfall simulation by a 1-hour 

Rapid-Update Cycle with the high resolution of 3 km in Germany. 

China suffers approximately nine tropical cyclones (TCs) each year in average (Shen et al., 2017). Most TCs develop into 

typhoons which always bring huge economic losses and a great number of casualties. Fujian is one of the most regularly 

affected provinces in the coastline of southeast China. Heavy rainfall caused by typhoon and complex terrains lead to severe 5 

flood disasters in Fujian Province. The rainfall forecasts play an important role to prevent the flood disasters, while the rainfall 

caused by typhoon with severe convection is still difficult to predict (Li et al., 2019). There are eight Doppler radar stations to 

obtain full coverage for meteorological monitoring in Fujian province. The plentiful radar data provide convenience and basis 

for the exploration of radar data assimilation in catchment scale. 

In this study, Meixi catchment located in Fujian province is chosen as the study area. Due to the frequent heavy rainfall, the 10 

flood disasters have attacked the Meixi catchment more than 20 times since 1949. In order to explore the reasonable use of 

Doppler radar data assimilation to correct the initial and lateral boundary conditions of the NWP systems, the WRF model is 

applied to simulate three typhoon storm events affecting the Meixi catchment and 3-DVar model is used to assimilate the radar 

data to improve the typhoon rainstorm simulations. Nine assimilation modes are designed by three kinds of radar data (radar 

reflectivity, radial velocity, radar reflectivity and radial velocity) and three assimilation time intervals (1h, 3h and 6h). The 15 

rainfall simulations are evaluated by three indices including relative error (RE), critical success index (CSI) and root mean 

square error (RMSE). 

2 Model and evaluation method 

2.1 WRF model and configurations 

As the latest-generation mesoscale NWP system, the WRF model in version 4.0 is used to simulate the three typhoon storm 20 

events. Three nested domains with two-way nesting are designed and centered over Meixi catchment. The grid spacings are 

set at 4 km, 12 km and 36 km for the three nested domains from inside to outside (Chen et al., 2017). The grid numbers for the 

nested domain sizes are 100×100 for Dom 1, 210×210 for Dom 2 and 300×300 for Dom 3 (Fig. 1). Meixi catchment can be 

completely covered by the innermost domain. All domains are comprised of 40 vertical pressure levels with the top level set 

as 50 hPa (Maiello et al., 2014). The NCEP Final (FNL) Operational Global Analysis data with 1°×1° grids are used to drive 25 

the WRF model and provide the initial and lateral boundary conditions. The time step is set to be 1 h for the WRF model 

output. The spin-up period of 12 h is applied to obtain a more accurate rainfall simulation. The option of physical 

parameterisations has significant effect on the rainfall simulations, especially for microphysics, planetary boundary layer 

(PBL), radiation, land-surface model (LSM) and cumulus physics (Otieno et al., 2019). Considering the application effect and 

frequency in southeast coast of China, WRF Single-Moment 6 (WSM 6) for microphysics, Yonsei University (YSU) for PBL, 30 

Rapid Radiative Transfer Model for application to GCMs (RRTMG) for longwave and shortwave radiation, Noah for LSM 
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and Kain-Fritsch (KF) for cumulus physics are adopted in this study (Srivastava et al., 2015; Hazra et al., 2017; Cai et al., 

2018). 

[Figure 1] 

2.2 3-DVar data assimilation 

The fundamental of 3-DVar data assimilation is to produce an optimal estimate of the true atmospheric state by the iterative 5 

solution of a prescribed cost function (Ide et al., 1997): 

1 0 1 01 1
( ) ( ) ( ) ( ) ( )
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where x is the state variable, xb is the first guess or background, y is the observation space, and y0 is the observation. y=H(x) is 

the model-derived observation that is transformed from x by the observation operator H for comparison against y0. B is the 

background error covariance matrix, and R is the observation error covariance matrix. The background error covariance has 10 

significant impact on the performance of data assimilation. Due to the wide applicability, the matrix of CV3 is adopted in this 

study to simplify the data assimilation procedure (Meng and Zhang, 2008). Equation (1) shows that the assimilated observation 

has significant effect on the performance of data assimilation. Therefore it is particularly important for time interval setting of 

data assimilation and the option of radar reflectivity and radial velocity. 

2.3 Observation operator for radar data 15 

The observation operator H in Eq. (1) links the model variables to the observation variables. For radar reflectivity, the 

observation operator is shown as (Sun and Crook, 1997): 

( )
rρqZ log517+143= ..

 (2) 

where Z is the radar reflectivity in dBZ, ρ is the density of air in kg m-3, and qr is rainwater mixing ratio in g kg-1. Equation (2) 

is derived by assuming a Marshall-Palmer raindrop size distribution and that the ice phases have no effect on reflectivity. 20 

For radial velocity, the model-derived radial velocity Vr can be calculated as (Tian et al., 2017b): 
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where (u, v and w) is the three-dimensional wind field, (x, y, z) represents the location of the observation point and (xi, yi, zi) 

represents the location of the radar station. ri is the distance between the location of a data point and the radar station, vt is the 

hydrometer fall speed or terminal velocity. According to Sun and Crook (1998), vt can be given by: 25 
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where a is the correction factor, p  is the base-state pressure and p0 is the pressure at the ground. 

2.4 Rainfall evaluation statistics 

The relative error (RE) is used to evaluate the total rainfall amount simulation: 

%100



P

PP
RE  (6) 

where P’ is 24-h accumulated areal rainfall simulation, which is averaged from all grids inside the Meixi catchment; and P is 5 

24-h accumulated areal rainfall observation, which is calculated by the Thiessen polygon method with observations of the 8 

rain gauges in Meixi catchment (Sivapalan and Blöschl, 1998). 

The spatiotemporal patterns of the rainfall simulation are evaluated by the critical success index (CSI) and root mean square 

error (RMSE): 
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In order to evaluate the simulation of spatial rainfall distribution, NA, NB and NC at each time step i are calculated by comparing 

the rainfall simulation with observation at the rain gauge locations as shown in Table 1, and 24 for N is the number of total 

time steps. For temporal dimension evaluation, NA, NB and NC are calculated based on the time series data obtained for the 

simulated and observed areal rainfall at each rain gauge i, and 8 for N is the number of rain gauges in Meixi catchment. The 15 

perfect score of CSI is 1. 

[Table 1] 

For spatial distribution of rainfall simulation, P’
j and Pj refer to the simulation and observation of 24-h accumulated rainfall at 

rain gauge j, respectively. M is the total number of rain gauges. For temporal dimension evaluation, P’
j and Pj are the areal 

rainfall simulation and observation at each time j. Total number of time steps is 24 for M. The perfect score of RMSE is 0. 20 
 

3. Study area and data 

3.1 Meixi catchment and storm events 

The Meixi catchment lies in east-central of Fujian province with subtropical monsoon climate. The drainage area is 956 km2. 

The average annual rainfall is approximately 1560 mm in Meixi catchment and most storm flood disasters are caused by 25 
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typhoon generated in Western Pacific. The most destructive flood occurs on 9 July, 2016 in this mountainous catchment and 

causes many casualties and huge economic losses. The 24 h accumulated rainfall is 242 mm and peak flow reaches 4710 m3/s. 

The previous history of heavy rainfall and flood, indicates that accurate rainfall forecasts appear to be particularly important 

for Meixi catchment. 

Three typhoon storm events, including Saola, Hagibis and Nepartak, are chosen to investigate the appropriate radar data 5 

assimilation modes in Meixi catchment. Saola formed on July 28, 2012 while landed Fuding, Fujian until August 3. With 

moving inland slowly, Saola weakened into a tropical storm at Jiangxi. In the whole process, Saola never had a direct impact 

on Meixi catchment and the accumulated 24-h rainfall was only 84 mm. Hagibis landed Shantou, Guangdong on June 15, 2014 

and then moved toward north with a fast-moving speed. Fortunately, Hagibis weakened into a tropical depression quickly 

during moving to northeastern Fujian on June 17. Therefore, Hagibis also had limited impact in Meixi catchment and the 10 

accumulated 24-h rainfall was only 66 mm. Nepartak reached Fujian on July 9 and strengthened at Putian. Then Nepartak 

moved towards the northwest with a fast-moving speed and affected Meixi catchment directly. During the period, Nepartak 

reached its peak intensity and led to heavy rainfall in Meixi catchment. Three rainfall storms are shown in Table 2. 

[Table 2] 

3.2 Radar data and assimilation modes 15 

In the 8 radar stations, S-band Doppler weather radar located at Changle can completely cover Meixi catchment. The 

observation radius of Changle radar reaches 250 km and the distance between Meixi catchment and radar station is less than 

100 km (Fig. 2), which makes the quality of radar data credible. The assimilated data, radar reflectivity and radial velocity, 

can be obtained once every 6 min continuously. All the radar data with quality control are provided by the newest generation 

weather radar network of China (CINRAD/SC). The observation error standard deviations of radar reflectivity and radial 20 

velocity are set 2 dBZ and 1 m s-1 in the 3-DVar model, respectively (Caya et al., 2005). The radar data assimilation modes 

are designed by three kinds of radar data (radar reflectivity, radial velocity, radar reflectivity and radial velocity) and three 

assimilation time intervals (1h, 3h and 6h). The rainfall simulation without data assimilation is used as control mode. Nine 

modes are shown in Table 3. 

 25 

[Figure 2 and Table 3] 

3.3 WRF cycling runs for data assimilation 

In order to obtain the whole process of the rainfall simulation, the running time is set as 36 h, 42 h and 36 h for storm event I, 

II and III, respectively. As shown in Fig 3, the cycling runs are set according to the time interval of data assimilation and run 

1 can be regarded as the WRF run without data assimilation. The dashed line segment represents the model spin-up. The first-30 

guess generated by run 1 is applied to drive run 2. As time progresses, the first guess file generated in the previous run is used 

to provide the initial conditions for the following run. For storm event I, data assimilation starts on 3 August 2012 at 00:00 

https://doi.org/10.5194/nhess-2020-146
Preprint. Discussion started: 6 July 2020
c© Author(s) 2020. CC BY 4.0 License.



7 

 

and occurs with intervals of 6 h, 3 h and 1 h. The start time of data assimilation is 18:00 on 17 June 2014 and the end time is 

00:00 on 18 June 2014 for storm event II. Data assimilation takes place on 8 July at 18:00 and ends on 9 July at 18:00 with 

intervals of 6 h, 3 h and 1 h for storm event III. 

[Figure 3] 

4 Results 5 

4.1 Accumulated rainfall simulation of the nine data assimilation modes 

Nine data assimilation modes for three storm events are evaluated by RE for 24 h accumulated rainfall. The average values of 

the RE (ARE) of three storm events for each mode is also calculated. As shown in Table 4, data assimilation modes make the 

rainfall simulation worse according to REs of event I. Only mode 8 has the closest rainfall simulation to the observation in the 

nine data assimilation modes and the RE is below 1%. For event II, all data assimilation modes can improve the accumulated 10 

rainfall simulations, while for event III, most modes make the accumulated rainfall simulations better except for mode 2 and 

3. Mode 8, i.e. assimilating radial velocity with time interval o 1 h, always has the lowest RE and performs the best. The 

improvement of the rainfall simulation is the most obvious for event III and the rainfall magnitude of mode 8 is close to the 

observation, which has important significance in torrential rainfall forecast and catastrophic flood forecast at medium and 

small basins. 15 

[Table 4] 

4.1.1 Evaluation of assimilating effects for the different kinds of radar data 

The assimilating effects for three kinds of radar data are compared in different assimilating time intervals. Based on the REs 

of mode 1, 2 and 3, assimilating radar reflectivity always leads to better simulations than assimilating other two kinds of radar 

data with time interval of 6 h. The worst mode for event I is assimilating both radar reflectivity and radial velocity while for 20 

event II and III is assimilating radial velocity. According to the REs of mode 4, 5 and 6, assimilating radial velocity becomes 

the best choice with time interval of 3 h for the three storm events. Assimilating radar reflectivity has the worst performance 

in the three modes for event II and III, whereas assimilating radar reflectivity and radial velocity together performs the worst 

for event I. When the time interval of data assimilation becomes 1 h, the ranking of assimilation mode for accumulated rainfall 

simulation is assimilating radial velocity > assimilating radar reflectivity and radial velocity > assimilating radar reflectivity. 25 

4.1.2 Evaluation of assimilation effects for the different assimilation time intervals 

The influences of assimilating time intervals on rainfall simulation are analysed in this section. Comparing the REs of mode 

1, 4 and 7, shortening the time interval of radar reflectivity assimilation has no obvious improvement for rainfall simulation 

and even makes the rainfall simulation worse. For assimilating radial velocity, all the rainfall simulations of three storm events 

become more accuracy and the assimilation effects are significantly improved as the time interval shortens from 6 h to 1 h. 30 
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The REs of the three storm events are all lower than 8% for the radial velocity assimilation with time interval of 1 h. According 

to mode 3, 6 and 9, shortening the assimilation time interval can improve the rainfall simulations in most cases for assimilating 

radar reflectivity and radial velocity at the same time, while only the RE of mode 6 is higher than the RE of mode 3. 

4.2 Spatiotemporal distribution of rainfall simulation based on the nine data assimilation modes 

The spatiotemporal patterns of the rainfall have significant effect on flood peek and peak time in medium and small catchments. 5 

The indices of CSI and RMSE are applied to compare the nine radar data assimilation modes. The average CSI values and the 

average RMSE values for the three storm events are also calculated for different assimilation modes. 

4.2.1 Evaluation in spatial dimension 

Table 5 indicates that most rainfall simulations with radar data assimilation are worse than the simulation without data 

assimilation for event I. Mode 8 with the highest CSI and lowest RMSE is the best choice in the nine data assimilation modes, 10 

which also leads to better rainfall simulation than no data assimilation. All RMSEs of the simulations with radar data 

assimilation are lower than the simulation without data assimilation, while only the CSI of mode 8 is higher than the simulation 

without data assimilation for event II. Combining the rainfall distributions shown in Fig.5, the falling areas of simulated rainfall 

without data assimilation are totally wrong. Although the spatial rainfall distributions have deviation compared with the 

observation, nine modes get better than the simulation without data assimilation as a whole, especially for mode 8 and 9. Based 15 

on the Table 5 and Fig.6, not all data assimilation modes help improve the rainfall simulation. Mode 4, 5 and 9 have just a 

little improvement on spatial distribution of rainfall simulation, and only the simulation of mode 8 is closed to the observation. 

[Table 5 and Figure 4, 5, 6] 

Based on the CSIs and RMSEs of mode 1, 2 and 3, assimilating radar reflectivity performs better than assimilating other two 

kinds of radar data in time interval of 6 h. Assimilating radar reflectivity and radial velocity at the same time always leads to 20 

the worst simulation. Comparing the two indices of mode 4, 5 and 6, assimilating radar reflectivity with time interval of 3 h 

can obtain the highest CSI for the three storm events, while assimilating radial velocity gets better performance than other two 

modes based on RMSE for event I and II. With the time interval of 1 h, the ranking of assimilation mode for spatial distribution 

of rainfall simulation is assimilating radial velocity > assimilating radar reflectivity and radial velocity > assimilating radar 

reflectivity. 25 

Comparing the two indices of mode 1, 4 and 7, rainfall simulations become even worse as the time interval of radar reflectivity 

assimilation shortens. For the three modes of assimilating radial velocity, most simulations become more accuracy and the 

assimilation effects are significantly improved as the time interval shortens from 6 h to 1 h. The same conclusion can be 

obtained for assimilating radar reflectivity and radial velocity at the same time, while the improvement is not as obvious as 

assimilating radial velocity. 30 
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4.2.2 Evaluation in temporal dimension 

As shown in Table 6 and Fig. 7, the similar results can be found that most data assimilation modes cannot help the simulation 

of WRF model get better for event I. Mode 8 is outstanding with the highest CSI and lowest RMSE. According to the values 

of CSI and RMSE, only mode 8 and 9 are useful for the improvement of rainfall simulation and the increase of accuracy is 

obvious for mode 8 in event II. For event III, although most CSIs of the simulation with radar data assimilation are lower than 5 

the simulation without data assimilation, the RMSEs show the opposite conclusions. From the Fig. 9, mode 5, 8 and 9 improve 

the rainfall simulation of temporal distribution and the simulation of mode 8 is basically consistent with the observation. 

[Table 6 and Figure 7, 8, 9] 

According to the CSIs and RMSEs of mode 1, 2 and 3, assimilating radar reflectivity with time interval of 6 h performs better 

than assimilating other two kinds of radar data. Assimilating radial velocity performs the worst for event II and assimilating 10 

radar reflectivity and radial velocity at the same time always leads to the worst simulation for event I and III. Based on the two 

indices of mode 4, 5 and 6, assimilating radial velocity with time interval of 3 h can obtain the highest CSI and lowest RMSE 

for the three storm events, while assimilating radar reflectivity and radial velocity at the same time performs worse than other 

two modes. For the time interval of 1 h, the ranking of assimilation mode for temporal distribution of rainfall simulation is 

assimilating radial velocity > assimilating radar reflectivity and radial velocity > assimilating radar reflectivity. 15 

Comparing the indices of mode 1, 4 and 7, rainfall simulations for temporal distribution become even worse as the time interval 

of radar reflectivity assimilation shortens from 6 h to 1 h. For mode 2, 5 and 8, shortening the time interval can significantly 

improve the rainfall simulation by assimilating radial velocity. Mode 3, 6 and 9 indicate that rainfall simulation is improved 

by shortening the time interval as a whole, whereas assimilating radar reflectivity and radial velocity at the same time with 

time interval of 3 h obtains the worst rainfall simulation for event II and III. 20 

5 Discussion 

Comparing the nine radar data assimilation modes, assimilating radial velocity with time interval of 6 h always performs the 

worst for rainfall simulation, while the rainfall simulation can be significantly improved by shortening the time interval of data 

assimilation. According to Eq. (3), although the physical process of the rainfall formation cannot be influenced by the radial 

velocity assimilation directly, the wind field and the water vapor transportation in initial and lateral boundary condition can be 25 

changed according to the wind information in radial velocity. However, the wind field is quite variable especially on the rainy 

days with typhoon. As the time interval becomes longer, the WRF model cannot be corrected by the radial velocity in time, 

whereas comparing with the simulation without data assimilation, the inevitable observation errors caused by atmospheric 

refractive in the radial velocity might lead to worse performance of the WRF model as the running time goes on (Montmerle 

and Faccani, 2009). That is the main reason that assimilating radial velocity with time interval of 6 h cannot obtain satisfactory 30 

simulations. Increasing the frequency of data assimilation, the effective information in radial velocity can correct the wind 
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field and the water vapor transportation in the background field of WRF model timely, which is helpful to improve the rainfall 

simulation (Kawabata et al., 2014). 

On the contrary, assimilating radar reflectivity have little help for improving the rainfall simulation except for accumulated 

rainfall. However rainfall simulation become even worse as the time interval of radar reflectivity assimilation shortens from 6 

h to 1 h. The background field of the WRF model has large difference with the actual weather situation, which can be reflected 5 

from the rainfall simulation without data assimilation against rainfall observation for the three storm events. As shown in Eq. 

(2), radar reflectivity is closely related to the humidity field and contains the information of rainfall hydrometeors (Wattrelot 

et al., 2014). That is to say the humidity information in radar reflectivity is quite different from the actual weather situation, 

which makes the 3-DVar data assimilation difficult to produce an optimal estimate of the true atmospheric state by the iterative 

solution of a prescribed cost function. It should be also mentioned that due to the unchangeable, the matrix of CV3 has wide 10 

applicability but is not practical for all cases (Kong et al., 2017). The inadaptation of CV3 in the typhoon synoptic system and 

the large differences between the humidity information in radar reflectivity and the actual weather situation might be the main 

reasons for poor performance of radar reflectivity assimilation (Sun, 2005). The more frequent the radar reflectivity 

assimilation, the greater the pressure on the 3-DVar data assimilation model. Other data assimilation model with variable 

background error covariance, such as the hybrid ensemble transform Kalman filter–three-dimensional variational data 15 

assimilation (ETKF-3DVAR), should be tested for radar reflectivity assimilation in further study. 

For the even rainfall events in space and time, such as storm event I, data assimilation should be used carefully. The WRF 

model has good performance on even rainfall simulation, especially for accumulated rainfall. The errors in the assimilated data 

may have negative effect on the rainfall simulation. Additionally, assimilating other kinds of data and radar data together may 

help to improve the rainfall simulation. Though the conventional observations, such as upper-air and surface observations from 20 

meteorological station and sounding balloon, have low spatiotemporal resolution, the kinds of data are various and have wide 

coverage, which can help to improve the atmospheric motion in the WRF model at a large scale (Li et al., 2018). Yesubabu et 

al. (2016) indicates that assimilating the satellite observation also has positive effect on the rainfall simulation. Assimilating 

different data sources together with the radar data may further improve the rainfall simulation in catchment scale. 

6 Conclusion 25 

Data assimilation is an efficient technique for improving the rainfall simulation. In order to explore the reasonable use of 

Doppler radar data assimilation to correct the initial and lateral boundary conditions of the NWP systems, three typhoon storm 

events, including Saola, Hagibis and Nepartak, are chosen to be simulated by WRF model with the nine modes in Meixi 

catchment located in southeast coast of China. The FNL analysis data with 1°×1° grids are used to drive the WRF model, and 

radar data from Changle Doppler radar station are applied to correct the initial and lateral boundary conditions. Three 30 

evaluating indices RE, CSI and RMSE are used to evaluate the nine radar data assimilation modes, which are designed by three 
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kinds of radar data (radar reflectivity, radial velocity, radar reflectivity and radial velocity) and three assimilation time intervals 

(1h, 3h and 6h). 

Contrastive analyses of the nine modes are carried out from three aspects: accumulated rainfall simulation, spatial rainfall 

distribution and temporal rainfall distribution. Four main conclusions are obtained: (1) in the nine radar data assimilation 

modes, assimilating radial velocity with time interval of 1 h can significantly improve the rainfall simulations and outperforms 5 

the other modes for all the three storm events; (2) shortening the assimilation time interval can improve the rainfall simulations 

in most cases, while assimilating radar reflectivity always leads to worse simulation as the time interval shortens; (3) radar 

reflectivity is the best choice for the data assimilation with time interval of 6 h, while radial velocity performs best for the data 

assimilation with time interval of 1 h; (4) data assimilation can improve the rainfall simulation as a whole, especially for the 

heavy rainfall with strong convection, whereas the improvement for even distributed rainfall in space and time is limited. More 10 

numerical simulation experiments should be tested in other catchments at different climate conditions. Further studies also 

should be carried out to investigate the data assimilation techniques to improve the simulation ability of heavy rainfall in the 

study areas. 
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Table captions 

 

Table 1: Rain-no rain contingency table for the WRF simulation against observation. 

Table 2: Three storm events occurred in Meixi catchment. 

Table 3: Radar data assimilation modes designed with data types and time intervals. 5 

Table 4: Accumulated rainfall simulation (mm) and RE values (%) of the nine data assimilation modes for three storm 

events. 

Table 5: CSI and RMSE for spatial distribution of rainfall simulation based on the nine data assimilation modes. 

Table 6: CSI and RMSE for temporal distribution of rainfall simulation based on the nine data assimilation modes. 

 10 

Figure captions 

 

Figure 1: The location of the Meixi catchment and three nested domains. 

Figure 2: The location of radar station and position relation between radar scan area and Meixi basin. 

Figure 3: The time bars of the assimilation cycling runs for (a) storm event I, (b) storm event II and (c) storm event III. 15 

Figure 4: Spatial distribution of the rainfall simulations with nine data assimilation modes for Event I. 

Figure 5: Spatial distribution of the rainfall simulations with nine data assimilation modes for Event II. 

Figure 6: Spatial distribution of the rainfall simulations with nine data assimilation modes for Event III. 

Figure 7: Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for Event 

I. 20 

Figure 8: Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for Event 

II. 

Figure 9: Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for Event 

III. 
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Table 1. Rain-no rain contingency table for the WRF simulation against observation. 

Simulation/observation Rain No rain (<0.1 mm/h) 

Rain NA (hit) NB (false alarm) 

No rain (<0.1 mm/h) NC (failure) / 
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Table 2. Three storm events occurred in Meixi catchment. 

Event ID Typhoon Storm start time (UTC+8) Storm end time (UTC+8) 24-h accumulated rainfall (mm) 

I Saola 03/08/2012 00:00 04/08/2012 00:00 84 

II Hagibis 17/06/2014 21:00 18/06/2014 21:00 66 

III Nepartak 08/07/2016 18:00 09/07/2016 18:00 242 
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Table 3. Radar data assimilation modes designed with data types and time intervals. 

Modes Time intervals of data assimilation Assimilated radar data 

1 6 h radar reflectivity 

2 6 h radial velocity 

3 6 h radar reflectivity and radial velocity 

4 3 h radar reflectivity 

5 3 h radial velocity 

6 3 h radar reflectivity and radial velocity 

7 1 h radar reflectivity 

8 1 h radial velocity 

9 1 h radar reflectivity and radial velocity 
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Table 4. Accumulated rainfall simulation (mm) and RE values (%) of the nine data assimilation modes for three storm 

events. 

Modes 

Event I Event II Event III 

ARE (%) Rainfall 

Simulation 

(mm) 

RE (%) 

Rainfall 

Simulation 

(mm) 

RE (%) 

Rainfall 

Simulation 

(mm) 

RE (%) 

No radar data 

assimilation 
85.16 0.88 43.16 34.32 64.20 73.47 36.22 

1 61.74 26.86 70.37 7.09 66.79 72.40 35.45 

2 60.97 27.77 80.88 23.09 58.59 75.79 42.22 

3 35.44 58.02 70.85 7.83 61.11 74.75 46.87 

4 41.49 50.86 79.69 21.29 71.75 70.35 47.50 

5 66.16 21.63 72.19 9.86 101.23 58.17 29.89 

6 37.10 56.05 77.49 17.94 151.64 37.34 37.11 

7 61.12 27.60 80.64 22.72 104.28 56.91 35.74 

8 83.65 0.91 70.67 7.55 227.96 5.80 4.75 

9 82.50 2.28 71.31 8.53 188.01 22.31 11.04 
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Table 5. CSI and RMSE for spatial distribution of rainfall simulation based on the nine data assimilation modes. 

Modes 
Event I Event II Event III Average values for the three events 

CSI RMSE CSI RMSE CSI RMSE CSI RMSE 

No radar data assimilation 0.7368 0.1535 0.4479 0.5635 0.6146 0.7482 0.5998  0.4884  

1 0.7614  0.4524  0.3587  0.4070  0.6154  0.7841  0.5785  0.5478  

2 0.6925  0.4967  0.2829  0.4771  0.6154  0.7844  0.5303  0.5861  

3 0.6865  0.6907  0.3346  0.4618  0.6154  0.8147  0.5455  0.6557  

4 0.7436  0.6261  0.3561  0.4359  0.6154  0.7905  0.5717  0.6175  

5 0.7358  0.5341  0.3195  0.4170  0.6096  0.7123  0.5550  0.5545  

6 0.7143  0.6614  0.2212  0.4783  0.5909  0.6285  0.5088  0.5894  

7 0.5337  0.4275  0.3949  0.4896  0.5938  0.8004  0.5075  0.5725  

8 0.7395  0.1505  0.4504  0.3589  0.6287  0.1643  0.6062  0.2246  

9 0.7368  0.4211  0.3168  0.3152  0.6146  0.4519  0.5561  0.3961  
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Table 6. CSI and RMSE for temporal distribution of rainfall simulation based on the nine data assimilation modes. 

Modes 
Event I Event II Event III Average values for the three events 

CSI RMSE CSI RMSE CSI RMSE CSI RMSE 

No radar data assimilation 0.6875 0.6018 0.3718 1.3131 0.6146 1.9223 0.5580  1.2791  

1 0.6830  1.0351  0.3069  1.3843  0.6034  1.8138  0.5311  1.4111  

2 0.6458  1.1787  0.2483  2.0950  0.6034  1.8232  0.4992  1.6990  

3 0.6421  1.2414  0.2969  1.4631  0.6034  1.8318  0.5141  1.5121  

4 0.6674  1.1411  0.2902  2.2037  0.6034  1.8153  0.5203  1.7200  

5 0.6796  1.1115  0.2969  2.0414  0.6145  1.7793  0.5303  1.6441  

6 0.6667  1.2878  0.2031  2.6387  0.5851  2.0122  0.4850  1.9796  

7 0.4549  1.5132  0.3125  2.3337  0.5938  1.8452  0.4537  1.8974  

8 0.6877  0.3822  0.3969  0.7015  0.6221  0.8459  0.5689  0.6432  

9 0.6875  1.3862  0.2663  1.1180  0.6146  1.1699  0.5228  1.2247  
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Figure 1. The location of the Meixi catchment and three nested domains. 
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Figure 2. The location of radar station and position relation between radar scan area and Meixi basin. 
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Figure 3. The time bars of the assimilation cycling runs for (a) storm event I, (b) storm event II and (c) storm event III.
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Figure 4. Spatial distribution of the rainfall simulations with nine data assimilation modes for Event I.
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Figure 5. Spatial distribution of the rainfall simulations with nine data assimilation modes for Event II.
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Figure 6. Spatial distribution of the rainfall simulations with nine data assimilation modes for Event III. 
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Figure 7. Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for 5 

Event I. 
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Figure 8. Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for 5 

Event II. 
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Figure 9. Time series bars of the rainfall simulations with nine data assimilation modes and the rainfall observation for 5 

Event III. 
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